

⁹⁹Ru (\leftarrow ⁹⁹Rh) as a TDPAC Probe in the Study of a High-T_C SuperconductorYoshitaka OHKUBO, Yoshio KOBAYASHI, Shizuko AMBE, Kaoru HARASAWA,[†] Masuo TAKEDA,[†]Seiichi SHIBATA,^{††} Kichizo ASAII,^{†††} Takuya OKADA, and Fumitoshi AMBE*

The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01

[†]Toho University, Funabashi, Chiba 274^{††}The Institute for Nuclear Study, The University of Tokyo, Tanashi, Tokyo 188^{†††}The University of Electro-Communications, Chofu, Tokyo 182

A radiochemical procedure has been established to dope carrier-free ⁹⁹Rh in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$. The time-differential perturbed-angular correlation of γ -rays emitted from the nuclear excited levels of the daughter nuclide ⁹⁹Ru in the superconducting and semiconducting samples with $x \approx 0.2$ and 1.0, respectively, revealed the hyperfine electric quadrupole interaction for the former and the magnetic interaction in addition for the latter. The results have shown that ⁹⁹Ru is a useful hyperfine-interaction probe comparable to ⁵⁷Fe.

Various hyperfine-interaction techniques using unstable nuclei as probes have been applied to the study of high-T_C superconductors since the discovery in 1986. In Mössbauer absorption spectroscopy, which has been most frequently utilized,^{1,2)} introduction of a certain amount of probe nuclei into the matrix is inevitable, resulting in some degree of alteration of its bulk properties. However, in time-differential perturbed-angular correlation (TDPAC) of γ -rays,³⁾ as in Mössbauer emission spectroscopy,⁴⁾ the amount of probes necessary for measurement is so small that they can be regarded as infinitely diluted impurities having little effect on the bulk. Thus far, TDPAC nuclides $^{99}\text{Mo} \rightarrow ^{99}\text{Tc}$,⁵⁾ $^{111}\text{In} \rightarrow ^{111}\text{Cd}$,⁶⁾ $^{140}\text{La} \rightarrow ^{140}\text{Ce}$,^{7,8)} and $^{181}\text{Hf} \rightarrow ^{181}\text{Ta}$ ⁸⁾ have been used as probes in the study of high-T_C superconductors. In order to exploit the usefulness of the technique further, we have established a radiochemical procedure to dope ⁹⁹Rh in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ samples and measured the TDPAC of γ -rays emitted from its daughter nuclide ⁹⁹Ru (Fig. 1).⁹⁾

The oxide, $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$, is orthorhombic and superconducting for $0 \leq x \leq 0.7$, but is tetragonal and semiconducting for $0.7 \leq x \leq 1$. There are two orthorhombic phases, ortho-I ($0 \leq x \leq 0.15$, $T_C = 93$ K) and ortho-II ($0.35 \leq x \leq 0.55$, $T_C = 58$ K). In both the orthorhombic and tetragonal structures, there are two

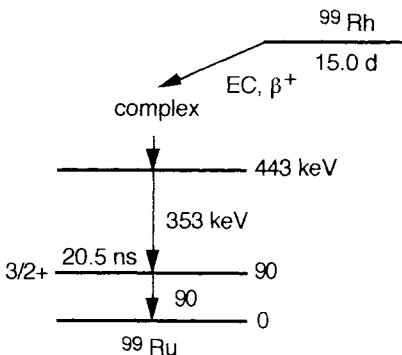


Fig. 1. Simplified decay scheme of ⁹⁹Rh (only nuclear energy levels and transitions relevant to the present work are shown).

distinctive sites for copper. The first site (Cu-1) is between two Ba layers, and forms one-dimensional Cu-O chains in the orthorhombic phases. The second site (Cu-2), between the Y and Ba layers, constitutes corrugated two-dimensional planes in both the orthorhombic and tetragonal phases. The planes form the superconduction layers in the orthorhombic phases.

About 80 mg of isotopically enriched (96.63 %) ^{99}Ru metal powder enveloped in Al foils was irradiated with 13-MeV protons available from the INS-SF cyclotron. The (p, n) reaction produces ^{99}Rh (half-life 15.0 days) from ^{99}Ru . The irradiated target was put in a KOH solution with a layer of CCl_4 at the bottom. Ruthenium metal was oxidized to RuO_4 by passing Cl_2 gas through the suspension and was extracted with CCl_4 . Carrier-free $^{99}\text{Rh}^{3+}$ remaining in the aqueous phase was purified by coprecipitation with iron (III) hydroxide and by anion exchange.¹⁰⁾

As the first step of introducing carrier-free $^{99}\text{Rh}^{3+}$ ions homogeneously in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$, we adopted their adsorption on one of the starting materials from an aqueous solution. Radioactive tracer experiments were performed to determine the pH dependence of adsorption of $^{99}\text{Rh}^{3+}$ ions on Y_2O_3 and CuO powders. The ions showed high adsorption on CuO in the alkaline region, as shown in Fig. 2. Consequently, they were adsorbed on CuO from a solution of $\text{pH} \approx 10$ in preparation of the samples for TDPAC measurement.

Stoichiometric amounts of dried high-purity powders of CuO with adsorbed $^{99}\text{Rh}^{3+}$, Y_2O_3 , and BaCO_3 were milled, and the mixture was heated in flowing oxygen at 200 °C for 1 h, then up to 890 °C at a rate of 3.8 °C/min, and was kept at that temperature for 6.5 h. The product was repowdered and pressed into a pellet. It was heated at 950 °C for 6 h and annealed at 550 °C for 15 h in oxygen. The powder X-ray diffraction pattern of undoped $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ prepared by the same heating process was typical of the ortho-I phase. Both the doped and undoped samples showed the Meissner effect at liquid nitrogen temperature. The x value was estimated to be about 0.2 by iodometry. A sample with a higher x value was prepared by heating the above one at 760 °C for 1 h under a reduced pressure of about 2 Pa. The x value of the sample obtained was about 1.0.

The TDPAC spectra of γ -rays of ^{99}Ru arising from ^{99}Rh in the samples were measured in the temperature range from 10 to 1173 K. The γ -rays employed for the measurement were the 353 - 90 keV cascade through the intermediate 3/2+ level with a half-life of 20.5 ns (Fig. 1). The TDPAC spectrometer was comprised of four 38 mm $\phi \times 25$ mm BaF_2 scintillators mounted on Hamamatsu R2059 photomultipliers, conventional fast-slow circuits, and a multichannel analyzer connected to a personal computer. The time resolution of the spectrometer was 350 ps with the energy windows of single-channel analyzers set at 1173- and 1333-keV γ -rays of ^{60}Co . Coincidence counts, N, for a detector combination with angles $\pi/2$ and π rad were measured as a function of the time (t) elapsed between the detection of 353- and 90-keV γ -rays. Four spectra, two for $\pi/2$ rad and two for π , were taken simultaneously and were processed together to yield the TDPAC spectrum:

$$A_{22}G_{22}(t) = 2[N(\pi, t) - N(\pi/2, t)]/[N(\pi, t) + 2N(\pi/2, t)].$$

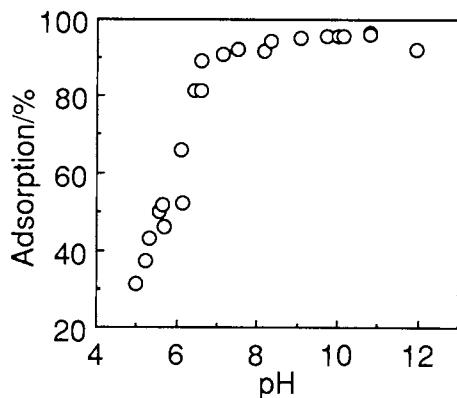


Fig. 2. Adsorption yield of carrier-free $^{99}\text{Rh}^{3+}$ ions on CuO from a 0.1 mol dm^{-3} NaCl solution (equilibration time was 2 h).

Figures 3 and 4 show typical TDPAC spectra obtained (left) and their frequency spectra (right) for the two samples prepared. As can be seen in Fig. 3(b), the frequency spectra of the sample with $x \approx 0.2$ have two distinct peaks. These peaks are attributed to electric quadrupole frequencies of ^{99}Ru with different ligand oxygen configurations. However, only one significant peak was observed in the frequency spectra of the $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ sample with $x \approx 1.0$ (Fig. 4(b)). The spectrum of the sample at 10 K is broadened, indicating an additional hyperfine interaction on ^{99}Ru nuclei at that temperature. We ascribe the origin of the broadening to a hyperfine magnetic interaction of the ^{99}Ru nuclei with magnetically ordered Cu ions. At 293 K, the width of the dominant peak is much smaller, though trailing in the low-frequency side is observed.

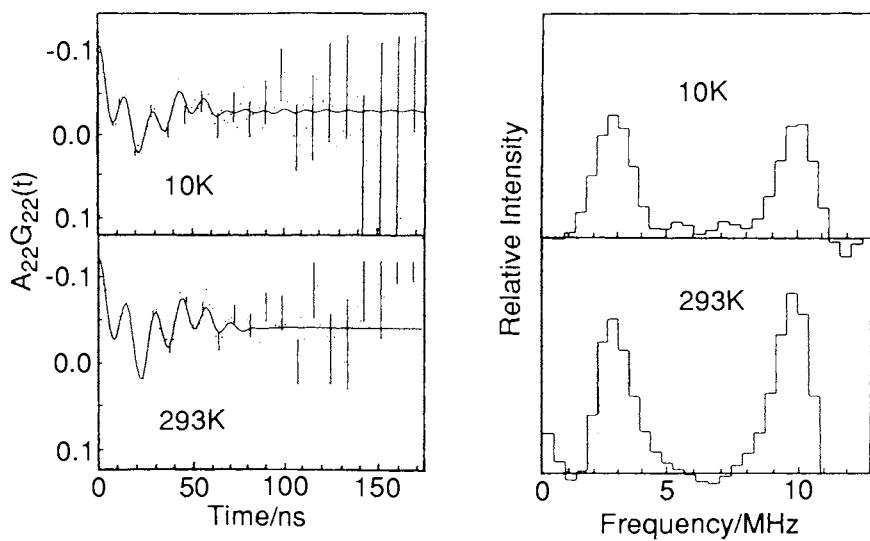


Fig. 3. Typical TDPAC spectra of γ -rays of ^{99}Ru arising from ^{99}Rh in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ with $x \approx 0.2$ (left) and their frequency spectra (right).

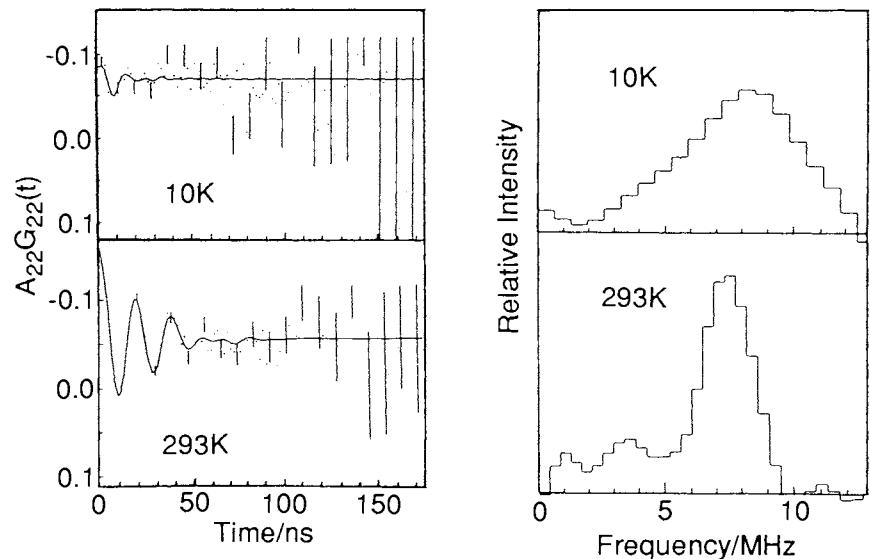


Fig. 4. Typical TDPAC spectra of γ -rays of ^{99}Ru arising from ^{99}Rh in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ with $x \approx 1.0$ (left) and their frequency spectra (right).

Antiferromagnetic ordering of the tetragonal phase of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ was first demonstrated by μSR , and the ordering was ascribed to Cu-2 atoms.¹¹⁾ Neutron-diffraction experiments confirmed its antiferromagnetic structure with the Néel temperature ≥ 500 K for $x = 1.0$, and a model with antiparallel spins at the Cu-2 sites was proposed.¹²⁾ Mössbauer measurements of hyperfine magnetic fields on ^{57}Fe doped in an oxygen-deficient $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ sample showed that the magnetic transition temperature T_N of Cu-2 planes is as high as 420 K, while T_N of the Cu-1 sites is much lower than that.¹³⁾ Therefore, we conclude that Ru ions occupy the Cu-1 site in our $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ sample with $x \approx 1.0$ on the basis of the observed temperature dependence of the TDPAC spectrum. Further work is in progress to determine the site position of ^{99}Ru in the $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ sample with $x \approx 0.2$.

In conclusion, ^{99}Ru has been shown to be a useful hyperfine-interaction probe comparable to ^{57}Fe concerning the investigation of superconducting materials. Detailed discussion on the present experimental results will be presented elsewhere with additional results including those of emission Mössbauer measurement of the same sample.

We are thankful to Professor K. Królas for his helpful suggestions and to Mr. Y. Iimura for the X-ray powder pattern measurement.

References

- 1) T. Shinjo, S. Nasu, T. Kohara, T. Takabatake, and M. Ishikawa, *J. Phys.*, **49**, C8-2207 (1988).
- 2) See also references cited in : L. T. Romano, M. B. H. Breese, D. N. Jamieson, C. Chen, G. W. Grime, and F. Watt, *Phys. Rev. B*, **44**, 6927 (1991).
- 3) A. Lerf and T. Butz, *Angew. Chem., Int. Ed. Engl.*, **26**, 110 (1987).
- 4) Z. Homonnay, S. Nagy, G. W. Jang, Y. Wei, S. D. Tyagi, and A. Nath, *Hyperfine Interact.*, **55**, 1301 (1990).
- 5) S. Y. Zhu, S. N. Zheng, A. L. Li, H. C. Huang, H. S. Du, H. L. Din, and D. H. Li, *Hyperfine Interact.*, **62**, 213 (1990).
- 6) A number of investigations have been conducted, even on $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ alone. An example is: H. Plank, O. Bauer, D. Forkel, F. Meyer, B. Roas, G. Saemann-Ischenko, J. Ströbel, H. Wolf, and W. Witthuhn, *Hyperfine Interact.*, **61**, 1139 (1990).
- 7) A. Mayer, S. Harris, B. Lindgren, and E. Karlsson, *Hyperfine Interact.*, **50**, 613 (1989).
- 8) Z. Z. Akselrod, G. A. Denisenko, B. A. Kommissarova, L. N. Kryukova, G. K. Ryasny, A. A. Sorokin, and L. G. Shpin'kova, *Hyperfine Interact.*, **61**, 1147 (1990).
- 9) E. Browne, J. M. Dairiki, R. E. Doeblner, A. A. Shihab-Eldin, L. J. Jardine, J. K. Tuli, and A. B. Buurn, "Table of Isotopes," 7th ed, ed by C. M. Lederer and V. S. Shirley, Wiley, New York (1978).
- 10) D. F. C. Morris and M. A. Khan, *Radiochim. Acta*, **6**, 110 (1966).
- 11) N. Nishida, H. Miyatake, D. Shimada, S. Okuma, M. Ishikawa, T. Takabatake, Y. Nakazawa, Y. Kuno, R. Keitel, J. H. Brewer, T. M. Riseman, D. L. Williams, Y. Watanabe, T. Yamazaki, K. Nishiyama, K. Nagamine, E. J. Ansaldo, and E. Torikai, *Jpn. J. Appl. Phys.*, **26**, L1856 (1987).
- 12) J. M. Tranquada, D. E. Cox, W. Kunnmann, H. Moudden, G. Shirane, M. Suenaga, P. Zolliker, D. Vaknin, S. K. Sinha, M. S. Alvarez, A. J. Jacobson, and D. C. Johnston, *Phys. Rev. Lett.*, **60**, 156 (1988).

(Received July 1, 1992)